inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jonathan D. Woodward, Philip M. Almond and Thomas E. Albrecht-Schmitt*

Department of Chemistry, Auburn University, Alabama 36849, USA

Correspondence e-mail: albreth@auburn.edu

Key indicators

Single-crystal X-ray study T = 193 K Mean σ (Si–O) = 0.008 Å R factor = 0.035 wR factor = 0.076 Data-to-parameter ratio = 18.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Caesium thorium silicate, Cs₂ThSi₆O₁₅

A caesium thorium(IV) silicate has been synthesized serendipitously under high-temperature solid-state conditions by the reaction of Th^{IV} with a fused silica/alumina reaction crucible. The compound crystallizes in the orthorhombic space group $Pca2_1$. The crystal structure consists of ThO₆ distorted octahedra corner-shared with SiO₄ tetrahedra to form an anionic three-dimensional framework possessing extended channels containing Cs⁺ cations. Cs₂ThSi₆O₁₅ is a phyllosilicate with the same sheet structure as β -K₃NdSi₆O₁₅.

Comment

Thorium silicates have received attention in the past owing to their ability to undergo metamictization, a crystalline-toamorphous phase change in the presence of fissionable nuclides (Graham & Thornber, 1974; Ewing, 1975). Thorite and huttonite are the two known naturally occurring phases of

Figure 1

The local coordination environment surrounding a typical Th^{IV} ion in Cs₂ThSi₆O₁₅. 50% probability displacement ellipsoids are depicted. [Symmetry codes for atoms O12A (bound to Si2): -x, -y, $\frac{1}{2} + z$; O6A (Si3): $\frac{1}{2} + x$, -y, z; O3A (Si4): $\frac{1}{2} + x$, -y + 1, z; O8A (Si4): x, y + 1, z; O15A (Si4): $\frac{1}{2} - x$, y, $-\frac{1}{2} + z$; O2A (Si5): -x, -y + 1, $-\frac{1}{2} + z$; O14A (Si5): $\frac{1}{2} - x$, y, $-\frac{1}{2} + z$; O9A (Si6): $\frac{1}{2} - x$, y, $\frac{1}{2} + z$].

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 22 February 2005

Accepted 16 March 2005

Online 25 March 2005

Figure 2

A view down the *b* axis depicting the ThSi₆O²⁻₁₅ three-dimensional framework. The ThO₆ octahedra corner-share with SiO₄ tetrahedra. The Cs⁺ cations are positioned in the channels created by the network structure.

ThSiO₄ (Taylor & Ewing, 1978). Thorite is isostructural with zircon ($ZrSiO_4$), while huttonite rarely occurs in nature and is isostructural with monazite (CePO₄) (Pabst & Hutton, 1951; Fuchs & Gebert, 1958; Sinha & Prasad, 1973). These phases exhibit markedly different metamictization processes (Mumpton & Roy, 1961). In contrast, naturally occurring and synthetic alkali and alkaline earth metal thorium silicates are scarce and include thornasite $[Na_{12}Th_3(Si_8O_{19})_4(H_2O)_{18}]$, and ekanite $(ThCa_2Si_8O_{20})$ turkestanite [Th(Ca_{0.70-} $Na_{0.25}_{2}K_{0.53}(Si_{8}O_{20})$] (Szymanski et al., 1982; Kabalov et al., 1998; Li et al., 2000). This paper reports the crystal structure of a caesium thorium silicate, Cs₂ThSi₆O₁₅.

The structure of Cs₂ThSi₆O₁₅ consists of an anionic, threedimensional thorium silicate network with Cs⁺ cations occupying channels. The local coordination environment surrounding the Th^{IV} ion is depicted in Fig. 1. The ThO₆ units adopt a slightly distorted octahedral geometry, being coordinated by six O atoms from the silicate moieties. The Th-Obond lengths are similar and range from 2.269 (7) to 2.319 (7) Å: note the bent O5-Th-O10 [173.8 (2)°] and O11-Th-O13 $[173.5 (3)^{\circ}]$ axes, while the O1-Th-O7 angle is relatively linear $[177.0 (2)^{\circ}]$. The *cis*-O-Th-O bond angles deviate appreciably from 90° , ranging from 84.7 (2) to 96.7 (3)°. The Th-O and Si-O bond lengths are similar to those found in other thorium silicates (Taylor & Ewing, 1978). Two of the silicate ligands share a single oxygen bridge. Bond valence sum calculations provide a value of 4.26 for Th, supporting a compound that contains Th^{IV} atoms (Brese & O'Keeffe, 1991).

A polyhedral representation of the anionic three-dimensional framework, viewed along the *b* axis, is shown in Fig. 2. The framework consists of ThO_6 distorted octahedra that

corner-share with SiO₄ tetrahedra. The Si–O bonds cornershared with the ThO₆ octahedra [1.577 (7)–1.587 (7) Å] are slightly shorter than those corner-shared with adjacent silicate tetrahedra [1.600 (8)–1.635 (7) Å]. The silicate moieties share corners with adjacent tetrahedra as well. The interconnected SiO₄ and ThO₆ polyhedra form cyclic arrays of various sizes to generate channels that extend throughout the structure. The caesium cations are positioned within the channels. The cations interact with O atoms, forming ten contacts with Cs⁺– O distances ranging from 3.096 (6) to 3.806 (7) Å.

 $Cs_2ThSi_6O_{15}$ is a phyllosilicate with the same sheet structure as β -K₃NdSi₆O₁₅ (Haile & Wuensch, 1997). The silicate sheets consist of four-, six- and eight-membered SiO₄ rings.

Experimental

ThOCO₃·H₂O (99.99%, Strem), TeO₃ (99.9%, CERAC) and CsCl (99.9%, Aldrich) were used as received. Reactions were performed in fused silica/alumina crucibles. Caution: Standard procedures for handling radioactive materials should be followed. The reactants ThOCO₃·H₂O (95.6 mg, 0.293 mmol), TeO₃ (154.4 mg, 0.879 mmol) and CsCl (500.0 mg, 2.97 mmol) were loaded into a fused silica/ alumina crucible. The crucible was heated within a muffle furnace at 1073 K for 7 d with no specific rate of heating or cooling. The resulting mixture in the crucible consisted of white powder with small quantities of small colorless blocks of Cs₂ThSi₆O₁₅. The reaction was originally intended to produce a caesium thorium tellurate. Instead, silica was abstracted from the walls of the reaction vessel to yield a silicate.

Crystal data	
Cs ₂ ThSi ₆ O ₁₅	Mo $K\alpha$ radiation
$M_r = 906.40$	Cell parameters from 4001
Orthorhombic, $Pca2_1$	reflections
a = 16.292 (1) Å	$\theta = 2.5 - 28.3^{\circ}$
b = 7.2154 (6) Å	$\mu = 14.25 \text{ mm}^{-1}$
c = 13.680 (1) Å	T = 193 (2) K
$V = 1608.1 (2) \text{ Å}^3$	Block, colorless
Z = 4	$0.04 \times 0.03 \times 0.01 \text{ mm}$
$D_x = 3.744 \text{ Mg m}^{-3}$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans Absorption correction: analytical (*XPREP* in *SHELXTL*; Sheldrick, 1997b) *T*_{min} = 0.452, *T*_{max} = 0.757 15290 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.076$ S = 1.074001 reflections 218 parameters $w = 1/[\sigma^2(F_o^2) + (0.0232P)^2 + 6.6296P]$ where $P = (F_o^2 + 2F_c^2)/3$ 4001 independent reflections 3649 reflections with $I > 2\sigma(I)$ $R_{int} = 0.058$ $\theta_{max} = 28.3^{\circ}$ $h = -21 \rightarrow 21$ $k = -9 \rightarrow 9$ $l = -18 \rightarrow 18$

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} = 0.003 \\ \Delta\rho_{\rm max} = 1.94 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -1.69 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Absolute \ structure: \ Flack \ (1983),} \\ 1916 \ {\rm Friedel \ pairs} \\ {\rm Flack \ parameter: \ 0.548 \ (8)} \end{array}$

Table 1	_
Selected	geometric parameters (Å, °).

Th-O7	2.269 (7)	Si3-O8	1.623 (7)
Th-O11	2.272 (7)	Si3-O6 ⁱⁱ	1.630 (9)
Th-O13	2.273 (8)	Si3-O9	1.635 (7)
Th-O1	2.315 (7)	Si4-O10	1.596 (7)
Th-O5	2.318 (6)	Si4-O3 ⁱⁱⁱ	1.614 (9)
Th-O10	2.319 (7)	Si4-O8 ^{iv}	1.622 (7)
Si1-O1	1.577 (7)	Si4-O15 ^v	1.627 (8)
Si1-O2	1.600 (8)	Si5-O11	1.588 (8)
Si1-O3	1.617 (9)	Si5-O2 ^{vi}	1.597 (8)
Si1-O4	1.622 (7)	Si5-O12	1.611 (7)
Si2-O5	1.587 (7)	Si5-O14 ^v	1.621 (7)
Si2-O6	1.606 (10)	Si6-O13	1.600 (8)
Si2-O4	1.624 (7)	Si6-O14	1.620 (7)
Si2-O12 ⁱ	1.633 (7)	Si6-O9 ^{vii}	1.626 (7)
Si3-O7	1.585 (7)	Si6-O15	1.630 (8)
07 Th 011	80.7 (2)	O11 Th O5	80.0 (2)
0/-1n-011	89.7 (3) 06.1 (2)	011 - 1n - 05 012 Th 05	89.9 (2)
0/-11-013	90.1(3)	013 - 111 - 03	0/.3 (3) 20.1 (3)
011 - 1n - 013	1/3.3 (3)	01 - 1n - 03	89.1 (2)
O/-In-OI	177.0 (2)	O/-In-O10	96.7 (3)
OII - In - OI	87.7 (3)	011 - 1n - 010	90.9 (2)
013-1h-01	86.4 (3)	OI - Ih - OI0	84.7 (2)
0/-1h-05	89.5 (2)	05-1h-010	173.8 (2)

Symmetry codes: (i) $-x, -y, z + \frac{1}{2}$; (ii) $x + \frac{1}{2}, -y, z$; (iii) $x + \frac{1}{2}, -y + 1, z$; (iv) x, y + 1, z; (v) $-x + \frac{1}{2}, y, z - \frac{1}{2}$; (vi) $-x, -y + 1, z - \frac{1}{2}$; (vii) $-x + \frac{1}{2}, y, z + \frac{1}{2}$.

The highest peak and the deepest hole are located 0.79 and 0.60 Å from Th1 and Cs2, respectively. Note that $Cs_2ThSi_6O_{15}$ crystallizes in the polar space group $Pca2_1$. The crystal of $Cs_2ThSi_6O_{15}$ that was examined proved to be an enantiomorphic twin.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve

structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *XP* (Sheldrick, 1997*b*) and *ATOMS* (Dowty, 1999); software used to prepare material for publication: *SHELXL97*.

This research was sponsored by the US Department of Energy, Heavy Elements Program (DE-FG02-01ER15187).

References

Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.

- Bruker (1999). SAINT-Plus. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SMART. Version 5.611. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dowty, E. (1999). ATOMS for Windows. Version 5.0. Shape Software, Kingsport, TN, USA.
- Ewing, R. C. (1975). Am. Mineral. 60, 728-733.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fuchs, L. H. & Gebert, E. (1958). Am. Mineral. 43, 243-248.
- Graham, J. & Thornber, M. R. (1974). Am. Mineral. 59, 1047-1050.
- Haile, S. M. & Wuensch, B. J. (1997). Am. Mineral. 82, 1141-1149.
- Kabalov, Yu. K., Sokolova, E. V., Pautov, L. A. & Schneider, J. (1998). Crystallogr. Rep. 43, 584–588.
- Li, Y.-P., Krivovichev, S. V. & Burns, P. C. (2000). Am. Mineral. 85, 1521–1525.
- Mumpton, F. A. & Roy, R. (1961). Geochim. Cosmochim. Acta, 21, 217-238.
- Pabst, A. & Hutton, C. O. (1951). Am. Mineral. 36, 371-385.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). XP and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sinha, D. P. & Prasad, R. (1973). J. Inorg. Nucl. Chem. 35, 2612-2614.
- Szymanski, J. T., Owens, D. R., Roberts, A. C., Ansell, H. G. & Chao, G. Y. (1982). *Can. Mineral.* **20**, 65–75.
- Taylor, M. & Ewing, R. C. (1978). Acta Cryst. B34, 1074-1079.